
28 Issue 27, Q3 2014 OPEN HORIZONS MAGAZINE

Introducing SSSD: You Should See Polyscheme PAM

by Lawrence Kearney

The ever increasing adoption of Linux in enterprise data centres has brought some of the scaling limitations of the
Name Service Switch (NSS) and Pluggable Authentication Module (PAM) framework to the forefront for service
implementers and system administrators. One of the most prominent symptoms of these limitations is the reduction
of performance when servers are connected to heavily loaded user stores. Furthermore, these stores are becoming
more specialised, such as those used for applications and identity management, and are increasing in numbers
themselves. In summary, large numbers of servers are needed for large numbers of users across many stores.

The System Security Services Daemon, or SSSD, resulted
from the effort to address some of these emerging
issues. It’s important to note that the SSSD extends NSS
and PAM, it does not replace it. Providing the ability for a
Linux server to securely use multiple user stores, improve
authentication performance and increase features.

Specifically, the SSSD can provide robust authentication
and caching services for thousands of users in different
stores concurrently using a unified configuration, and
integrate natively with those stores. The caching model
not only reduces server authentication workloads
significantly but also allows for true offline authentication
services.

So why is the SSSD not at the centre of all the Linux
administrator water cooler discussions? Well, basically
because hardly anyone has heard of it. The primary
reasons for this being that it has been quietly slipped into
Linux distributions over the past two years and it has that
horrible, horrible name.

If you want to know how to do things using the SSSD
against both eDirectory and Active Directory back ends,
please read on.

SSSD History

The beginnings of the SSSD lie in an open source project
named FreeIPA (Identity, Policy and Audit). The primary
goal of the project is to provide a truly interoperable
identity management, authentication and authorisation
solution for Linux, UNIX, Windows and Apple computers.
The FreeIPA effort is actually a collection of projects
designed to provide a solution framework, which
includes, well, a FreeIPA client. Red Hat is a primary

sponsor and development contributor to the parent
project. Their development focus was to provide a client
that was narrower in scope than the open source parent,
but could still provide authentication and integration
enhancements.

The features in 1.9, v1.11 and 1.12 are remarkable
because they reduce or can even eliminate the need
for windbindd. The Windows Berkeley Internet Name
Domain daemon (windbindd) is used to provide access
to NTFS shares and can be used to map Windows Security
Identifiers (SID) to posix User identifiers (UID) and group
identifiers (GID). ID mapping, share access and migration
from configurations using windbindd will be the subject
of future articles.

Preparing for the SSSD

The SSSD provides an extremely flexible and
comprehensive service. As of this writing its most recent
features include SID mapping and CIFS share integration.
This article details the use of the SSSD for authentication
and authorisation configurations on the RHEL 6.5 and
SLES 11.2 platforms. Both use similar SSSD software
versions.

That said, every Linux user must have a UID and a primary
GID to successfully authenticate. Technically, UIDs and
GIDs are numeric values that are resolved to user and
group names by the system (NSS actually), and if a user
only belongs to one group, that group is their primary
GID.

The first objective is to decide where the UID and GID
information will come from. These values can be stored in
local and remote user stores. Both Novell Open Enterprise
Server for Linux and Windows Server 2008 R2 have the
ability to store and reference UID and GID attribute/value

Relevant version information

v1.9 Active Directory identity provider and
UID-GID/SID mapping capabilities
added

v1.11 Enhancements in Active Directory
access control added

v1.12 CIFS integration and group policy
support added.

29Issue 27, Q3 2014OPEN HORIZONS MAGAZINE

pairs. Using the Linux User Management tools and the
Identity Management for Unix role, respectively. Locally,
the SSSD can create valid users and groups and store
them in its own secure cache as well.

Consider your use case(s)

1. Will users be authenticating to an application
running on the server?

If so the successful comparison of the user credentials
and group memberships may be all that is required
to authenticate and authorise the user.

2. Will users be authenticating to an application
running on the server that requires them to have
UIDs and GIDs?

Believe it or not this use case does occur. Consider
using dynamic UID/GID mapping configurations
and setting login shell values to “/bin/false” for these
users. This would prevent authentication to the local
server and the creation of home directories.

3. Will users be authenticating to the Linux server
to access local resources (file systems, middle tier
application configurations, sudo, autofs, etc.)?

If so ensuring users have valid attribute values
populated for login shells and home directories, in
addition to their UIDs and GIDs, even if allocated
dynamically, would be a requirement.

Software: the needed and the handy

What software is involved with this newfangled SSSD
stuff? Like anything else, it depends.

LDAP only configurations: The most up-to-date LDAP
libraries and a version of the openLDAP client (which
is very useful for testing and trouble shooting) for your
platform is recommended.

Active Directory configurations: When using LDAP/
kerberos or the SSSD Active Directory identity provider,
the most recent kerberos client, kerberos libraries and
samba libraries for your platform are required to initially
configure the SSSD (technically for domain joining).
However, leaving them installed and configured will be
useful for troubleshooting problems later.

Linux servers: Minimally the sssd and sssd-client
packages. Recommended packages include sssd-tools
and ldb-tools which provide the ability to use the SSSD to
manage local accounts and the SSSD cache file records.
If you implement SSSD on a large scale the ability to
manage cache records without invalidating or deleting

the entire cache for a user store can be useful.

The SSSD cache files use the “LDAP like Database” (LDB)
file format which is identifiable by the file name extension
of “.ldb”. It is interesting to note that samba databases use
the “Trivial Database” (TDB) file format for storing simple
key/value pair records, and these two databases share
a relationship. LDB introduces a LDAP like hierarchy to
data stored using the linear TDB method. The result is
the presentation of organised data records without a
database application being required.

Modifying the NSS and PAM configuration files for
a Linux server can be an unforgiving experience if
done incorrectly. Fortunately both the RHEL and SLES
platforms have tools that will make the required changes
to these files in a way the system expects. They are named
“authconfig” and “pam-config” and they are both SSSD
aware on platforms SSSD is available on.

After installing the SSSD software, use the appropriate
commands to add it to the NSS and PAM configuration
files for your platform.

RHEL:
authconfig --enablesssd --enablesssdauth
--enablemkhomedir –updateall

SLES:
pam-config --add --sss --mkhomedir

Implementing the SSSD

So, the software is installed and we’re ready to configure
the SSSD. All SSSD configuration directives are managed
in one file, “/etc/sssd/sssd.conf”.

The SSSD configuration file structure:

[sssd]
services =
domains =userstore1

Global parameters,
domain and monitored
service responder
identification

[nss], [pam], [sudo]…
reconnection_retries =
filter_users =

Monitored service
responder parameters

[domain/userstore1]
id_provider =ldap
auth_provider =ldap

SSSD domain parameters

The minimum configuration requires a defined domain
in the [sssd] section, and a configured “SSSD domain”.

* SSSD Domain = Identity Provider + Authentication
provider

Li
nu

x

30 Issue 27, Q3 2014 OPEN HORIZONS MAGAZINE

Working with identity providers

Depending on the SSSD identity
provider(s) used, and there are
more than presented in this article,
carefully consider whether the
configuration directives used by the
provider fulfill your use case and
security needs. Many will implement
features native to a particular store.
Such as store auto-discovery, fail over,
account expiration and password
policy support to name but a few.
Alternatively, even if connecting to
a proprietary store using the LDAP
identity provider, SSSD configuration
directives could still be used to
implement select features native to
that store.

Novell eDirectory via LDAP

Because Novell eDirectory rarely
incorporates a kerberos service (but
it can), nearly all connectivity to these
stores will use the LDAP identity
provider. The SSSD does not operate
without security so the server TLS/
SSL infrastructure is assumed to be
present and LDAP searches (using
the ldapsearch utility perhaps) are
successful using that security.

The example uses a local copy of
the public key certificate from the
eDirectory Certificate Authority,
strict cipher requirements and
incorporates local and remote
accounts managed by the SSSD.

The configuration (as shown in figure
1) explained:

•	 The LOCAL domain, then the
LDAP1 domain is searched for
users

•	 The NSS and PAM responders
allow three user login attempts
per session (but never return
“root”)

•	 Implements a UID/GID range for
local accounts and remote UID/
GID values are not mapped

•	 All users are cached on query
and user ID case is ignored

•	 Uses anonymous LDAP
credentials for eDirectory access

Figure 1: Using the SSSD LDAP providers

[sssd]
config_file_version = 2
services = nss, pam
domains = LOCAL,LDAP1

[nss]
filter_users = root
filter_groups = root

[pam]
reconnection_retries = 3

[domain/LOCAL]
cache_credentials = True
id_provider = local
min_id = 4000
max_id = 5000

[domain/LDAP1]
enumerate = False
cache_credentials = True
case_sensitive = False

id_provider = ldap
auth_provider = ldap
access_provider = ldap

ldap_schema = rfc2307bis
ldap_user_name = cn
ldap_user_member_of = groupMembership
ldap_group_name = cn
ldap_uri = ldap://darkvixen160.darkvixen.com
ldap_search_base = o=DVC
ldap_access_filter = groupMembership=cn=DARKVIXEN250_G,
 ou=LDAP,ou=SVS,o=DVC
ldap_tls_cacert = /etc/openldap/cacerts/DARKVIXEN160.crt
ldap_tls_cipher_suite = HIGH:MEDIUM:+SSLv2
ldap_tls_reqcert = Demand
ldap_id_use_start_tls = True

The /etc/sssd/sssd.conf file

Li
nu

x

31Issue 27, Q3 2014OPEN HORIZONS MAGAZINE

•	 Allows users in the
DARKVIXEN250_G group to
authenticate to the server

•	 Enforces a high TLS/SSL
encryption cypher

Microsoft Active Directory via
LDAP and Kerberos

In this example access to Active
Directory is implemented using
LDAP and kerberos. Improved
security is provided using the
Simple Authentication Service
Layer/Generic Security Service
API (SASL-GSSAPI) method, which
kerberos supports fully (instead of
anonymous credentials).

Using SASL-GSSAPI provides a way
for the Linux server to communicate
securely with Active Directory using
its native authentication framework.
First, the kerberos client is used to
request the initial kerberos tickets
from a domain controller, and then
the Linux server is joined to the
target domain using samba utilities.

Implement a basic samba and
kerberos client configuration to
facilitate connectivity to a domain
controller. Be sure to include the
security = ads directive in the /etc/
samba/smb.conf file and to use all
uppercase characters for the realm
in /etc/krb5.conf file.

Properly configured time
synchronization and Domain
Name Service (DNS) services are
key to successful and reliable
Active Directory authentication
configurations.

First, we request a kerberos ticket
for our joining operation using a
privileged account

darkvixen250:~ # kinit DomainJoin

Enter password when prompted

Verify the domain controller is visible
and responds correctly

darkvixen250 ~# net ads info

Join the domain and generate a keytab credential file (for SASL-GSSAPI
connectivity)

darkvixen250 ~# net ads join ‐k

Using short domain name ‐‐ DVC
Joined ‘DARKVIXEN250’ to dns domain ‘dvc.darkvixen.com’

Verify the following attribute values for the new Linux server computer object

distinguishedName: CN=darkvixen250,CN=Computers,
DC=dvc,DC=darkvixen,DC=com

dNSHostName: darkvixen250.dvc.darkvixen.com

sAMAccountName: darkvixen250$

servicePrincipleName: HOST/DARKVIXEN250,
HOST/darkvixen250.dvc.darkvixen.com

 Verify the sAMAccountName attribute value is listed in the keytab file
credentials

darkvixen250:~ # net ads keytab list

Destroy the current kerberos ticket cache used for joining

darkvixen250:~ # kdestroy

Obtain a new kerberos ticket using the server credentials

darkvixen250:~ # kinit ‐k DARKVIXEN250$

(Notice no password is required)

Test a secure LDAP search using the SASL-GSSAPI method

darkvixen250:~ # ldapsearch ‐H ldap://darkvixen160win.dvc.darkvixen.com
‐Y GSSAPI ‐N ‐b “dc=dvc,dc=darkvixen,dc=com” ‐s sub cn=”<Some_User>”

Noting the header of the results of a successful search operation

SASL/GSSAPI authentication started
SASL username: DARKVIXEN250$@DVC.DARKVIXEN.COM
SASL SSF: 56
SASL data security layer installed.

The /etc/sssd/sssd.conf file

[sssd]
config_file_version = 2
services = nss, pam
domains = LOCAL,dvc.darkvixen.com

[nss]
filter_users = root

Li
nu

x

32 Issue 27, Q3 2014 OPEN HORIZONS MAGAZINE

filter_groups = root

[pam]
reconnection_retries = 3

[domain/LOCAL]
cache_credentials = True
id_provider = local
min_id = 4000
max_id = 5000

[domain/dvc.darkvixen.com]
cache_credentials = true
enumerate = false
case_sensitive = false
dns_discovery_domain = dvc.darkvixen.com

id_provider = ldap
auth_provider = krb5
access_provider = ldap

krb5_realm = DVC.DARKVIXEN.COM
krb5_server = darkvixen160win.dvc.darkvixen.com
krb5_kpasswd = darkvixen160win.dvc.darkvixen.com
krb5_validate = true
krb5_renewable_lifetime = 1d
krb5_lifetime = 1d

ldap_schema = ad
ldap_id_mapping = false
ldap_uri = ldap://darkvixen160win.dvc.darkvixen.com
ldap_user_search_base = dc=dvc,dc=darkvixen,dc=com
ldap_group_search_base = dc=dvc,dc=darkvixen,dc=com
ldap_disable_referrals = true
ldap_access_order = filter, expire
ldap_account_expire_policy = ad
ldap_access_filter = memberOf=cn=DARKVIXEN250_G,ou=LDAP,
 ou=SVS,dc=dvc,dc=darkvixen,dc=com
ldap_sasl_mech = GSSAPI
ldap_sasl_authid = DARKVIXEN250$@DVC.DARKVIXEN.COM

Figure 2: Using the SSSD LDAP and kerberos providers

The configuration (as shown in
figure 2) explained:

•	 The LOCAL domain, then the
dvc.darkvixen.com domain is
searched for users

•	 The NSS and PAM responders
allow three user login attempts
per session (but never return
“root”)

•	 Implements a UID/GID range for
local accounts and remote UID/
GID values are not mapped

•	 All users are cached on query
and user ID case is ignored

•	 Uses SASL-GSSAPI security for
Active Directory access

•	 Does not allow expired accounts
to authenticate

•	 Allows users in the
DARKVIXEN250_G group to
authenticate to the server

Microsoft Active Directory via AD
identity provider

The SSSD Active Directory identity
provider demonstrates significant
improvements over its LDAP/
kerberos predecessor in terms of
functionality, performance and
simplicity. Currently the Active
Directory identity provider is not
available on the SLES 11 SP2/SP3
platforms. However it is being
included in SLES 12 and the author
is an animated supporter of it
being included in the SLES 11 SP4
distribution. That said the following
configuration applies to RHEL 6.5
only.

Be sure to implement the same
samba and kerberos client
configurations, and perform the
same domain joining operations
as detailed in the LDAP/kerberos
section.

The configuration (as shown in
figure 3) explained:
•	 The LOCAL domain, then the

dvc.darkvixen.com domain is
searched for users

•	 The NSS and PAM responders
allow three user login attempts
per session (but never return
“root”)

Li
nu

x

33Issue 27, Q3 2014OPEN HORIZONS MAGAZINE

The /etc/sssd/sssd.conf file

[sssd]
config_file_version = 2
services = nss, pam
domains = LOCAL,dvc.darkvixen.com

[nss]
filter_users = root
filter_groups = root

[pam]
reconnection_retries = 3

[domain/LOCAL]
cache_credentials = True
id_provider = local
min_id = 4000
max_id = 5000

[domain/dvc.darkvixen.com]
cache_credentials = True
enumerate = False

ad_server=darkvixen160win.dvc.darkvixen.com

id_provider = ad
auth_provider = ad
access_provider = ldap

ldap_schema = ad
ldap_id_mapping = False

ldap_sasl_mech = GSSAPI
ldap_sasl_authid = DARKVIXEN250$@DVC.DARKVIXEN.COM

ldap_access_order = filter, expire
ldap_account_expire_policy = ad
ldap_access_filter = memberOf=cn=DARKVIXEN250_G,ou=LDAP,
 ou=SVS,dc=dvc,dc=darkvixen,dc=com

•	 Implements a UID/GID range for
local accounts and remote UID/
GID values are not mapped

•	 All users are cached on query
and user ID case is ignored

•	 Uses SASL-GSSAPI security for
Active Directory access

•	 Does not allow expired accounts
to authenticate

•	 Allows users in the
DARKVIXEN250_G group to
authenticate to the server

Notice the numerous LDAP directives
in the file are replaced with a few
select directives set to a value of
“ad”. This is due to the development
of the SSSD to natively understand
Active Directory and its features. The
“access_provider“ however is still set
to “ldap”.

This is due to limitations in the v1.9
Active Directory access provider. It
currently can only assess whether
Active Directory accounts are
expired. However, part of the
flexibility of the SSSD configuration
is that identity, authentication and
access providers can be mixed to
accommodate nearly any desired
configuration.

So if the Active Directory access
provider can’t do it yet, the LDAP
access provider can if configured
properly.

User naming collisions

One of the most remarkable features
of the SSSD is its ability to gracefully
handle user naming collisions.
Suppose all three of the SSSD
domains in these examples existed
in the same sssd.conf file (and they
can).

Demonstrating this, the “domains=”
directive in the [sssd] section would
look like the example below.

[sssd]
config_file_version = 2
services = nss, pam
domains = LOCAL,LDAP1,dvc.
darkvixen.comFigure 3: Using the SSSD Active Directory and LDAP providers

Li
nu

x

34 Issue 27, Q3 2014 OPEN HORIZONS MAGAZINE

Now, suppose as well that a user ID of “MSTEELE” existed
in each of those domains. If you only specified the user
ID as “MSTEELE”, logging in using SSH for example, the
SSSD would locate the user in the “LOCAL” domain first
and require those credentials to authenticate the user.
The SSSD uses python regular expressions to construct
the user ID formats it chooses to understand (which is
configurable). The default results in it deciding that
anything following the user ID and an “@” character, is
the SSSD domain.

This means the user could be specified using any of the
following formats (noticing the “case play”) to log into
any of the configured domains:

msteele@LOCAL
MSTEELE@ldap1
msteele@dvc.darkvixen.com

Not many services grant methods for managing collisions
at all, never mind one this easy to configure and use.

What’s next for the SSSD?

With all of the features the SSSD brings to the table it is
hard to believe there is more in an already stuffed pipe.

Except that there is. The RHEL7 and SLES12 platforms are
incorporating more recent versions of the SSSD (v1.11)
that include features that make it one of the best, and
simplest to deploy, integration tools in the box. For
example, when joining a server to a domain using the
realmd application, the SSSD Active Directory identity
provider is configured in the sssd.conf file automatically.

Additionally the Active Directory access provider
supports LDAP formatted filters and basic group policies.
Version 1.12, which is in the wild and sure to be included
in server updates, also touts initial CIFS integration
support. There may be valid use cases for windbindd out
there for now, but SSSD is well on its way to becoming
the one stop Linux integration shop we have all been
hoping for.

Lawrence Kearney has over 20 years of
experience supporting and designing
enterprise academic and corporate
computing environments in the USA. He
is a member of the Novell TTP Advisory
board and has experience with many
Novell and SUSE Linux solutions. He
coauthored the Novell GroupWise 8 Best
Practice Wiki.

Li
nu

x

